quora distilbert multilingual
sentence-transformersQUORA-DISTILBERT-MULTILINGUAL Model Documentation
Introduction
The quora-distilbert-multilingual
model is part of the sentence-transformers
library. It maps sentences and paragraphs to a 768-dimensional dense vector space, ideal for tasks like clustering or semantic search.
Architecture
The model architecture consists of a Transformer
component and a Pooling
layer. The Transformer
utilizes the DistilBertModel
with a maximum sequence length of 128. The Pooling
layer is configured for mean pooling, which averages token embeddings to generate sentence embeddings.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Training
The model was trained by sentence-transformers
. It employs techniques from the Sentence-BERT framework, enhancing BERT models with Siamese networks for generating sentence embeddings.
Guide: Running Locally
To use this model locally, you can follow either of these methods:
Using sentence-transformers
Library
-
Install package:
pip install -U sentence-transformers
-
Load and use the model:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('sentence-transformers/quora-distilbert-multilingual') embeddings = model.encode(sentences) print(embeddings)
Using transformers
Library
-
Import libraries:
from transformers import AutoTokenizer, AutoModel import torch
-
Define mean pooling function:
def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
-
Load model and tokenizer:
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/quora-distilbert-multilingual') model = AutoModel.from_pretrained('sentence-transformers/quora-distilbert-multilingual')
-
Tokenize and compute embeddings:
sentences = ['This is an example sentence', 'Each sentence is converted'] encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
Cloud GPUs
For performance improvements, consider using cloud-based GPU services such as AWS, Google Cloud, or Azure. These platforms offer scalable resources to expedite model inference and training tasks.
License
The model is licensed under the Apache-2.0 License. More details can be found in the model documentation on the Hugging Face platform.