S Pub Med Bert Med Qu A D
TimKondIntroduction
S-PubMedBert-MedQuAD is a sentence-transformers model designed to map sentences and paragraphs to a 768-dimensional dense vector space. This model is suitable for tasks such as clustering and semantic search.
Architecture
The model is based on a SentenceTransformer architecture, which includes:
- A Transformer layer with a maximum sequence length of 512 and without lowercasing.
- A Pooling layer that uses mean tokens for pooling, producing a word embedding dimension of 768.
Training
The training of S-PubMedBert-MedQuAD involved:
- A DataLoader with 82,590 samples, using a batch size of 2 and shuffling.
- A SoftmaxLoss function for training with two labels and a sentence embedding dimension of 768.
- Training parameters included one epoch, a learning rate of 2e-5, AdamW optimizer, no bias correction, a warmup scheduler, and a weight decay of 0.01.
Guide: Running Locally
-
Install Dependencies: Ensure you have
sentence-transformers
installed.pip install -U sentence-transformers
-
Usage with Sentence-Transformers:
from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('TimKond/S-PubMedBert-MedQuAD') embeddings = model.encode(sentences) print(embeddings)
-
Usage without Sentence-Transformers:
from transformers import AutoTokenizer, AutoModel import torch def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ['This is an example sentence', 'Each sentence is converted'] tokenizer = AutoTokenizer.from_pretrained('TimKond/S-PubMedBert-MedQuAD') model = AutoModel.from_pretrained('TimKond/S-PubMedBert-MedQuAD') encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
For better performance, consider using cloud GPUs from providers like AWS, GCP, or Azure.
License
The S-PubMedBert-MedQuAD model is released under the MIT License.