sdxl_chinese_ink_lora
ming-yangIntroduction
The SDXL_CHINESE_INK_LORA
model is a finetuned version of the Stable Diffusion XL model, specifically designed for creating images in the style of contemporary Chinese ink paintings.
Architecture
This model utilizes the Stable Diffusion XL base model, enhanced by the LCM-LORA adapter for faster inference and the Chinese Ink LORA for stylistic rendering.
Training
The model is trained using the stabilityai/stable-diffusion-xl-base-1.0
as the base, with additional adapters for style rendering. The inference process leverages LCM-LORA to accelerate sampling.
Guide: Running Locally
-
Install Required Libraries:
Update
pip
and install necessary libraries:pip install --upgrade pip pip install --upgrade diffusers transformers accelerate peft pip install matplotlib
-
Load the Model:
Load the base model and adapters:
import torch from diffusers import DiffusionPipeline, LCMScheduler import matplotlib.pyplot as plt pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", variant="fp16", torch_dtype=torch.float16 ).to("cuda") pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl", adapter_name="lcm") pipe.load_lora_weights("ming-yang/sdxl_chinese_ink_lora", adapter_name="Chinese Ink") pipe.set_adapters(["lcm", "Chinese Ink"], adapter_weights=[1.0, 0.8])
-
Generate Images:
Use the trigger word "Chinese Ink" to generate images:
prompts = ["Chinese Ink, mona lisa picture, 8k", "mona lisa, 8k"] generator = torch.manual_seed(1) images = [pipe(prompt, num_inference_steps=8, guidance_scale=1, generator=generator).images[0] for prompt in prompts] fig, axs = plt.subplots(1, 2, figsize=(40, 20)) axs[0].imshow(images[0]) axs[0].axis('off') axs[1].imshow(images[1]) axs[1].axis('off') plt.show()
-
Cloud GPUs:
Consider using cloud-based GPUs such as AWS EC2, Google Cloud, or Azure for efficient execution.
License
This model is released under the creativeml-openrail-m
license. Please ensure compliance with the license terms when using the model.